rdot

Rdot ECD Display
 ECD0430
 Datasheet

Rev. 2020-05-18

Version history

| Version | Date | Description | Changed by |
| :---: | :---: | :---: | :---: | :---: |
| V1.0 | First issue | Philip Holgersson | |
| V1.1 | 2019-05-08 | Error correction | Robert Samefors |
| V1.2 | 2019-09-24 | Added circuit suggestions | Philip Holgersson |
| V1.3 | Error correction | Sigrid Smedberg | |
| V1.4 | 2019-12-16 | Added ACF | Philip Holgersson |
| V1.5 | 2020-02-05 | Added ACF Footprint | Philip Holgersson |
| V1.6 | 2020-02-17 | Driving scheme update | Philip Holgersson |

Contents

	Item
	Page
Introduction	2
Optical characteristics	3
Mechanical characteristics	3
Timing characteristics	3
Electrical characteristics	4
Charge characteristics	4
Power consumption	5
Operating conditions	5
Lifetime	5
Recommended connectors	5
Driving scheme	5
Circuit implementation suggestions	6
	7

1. Introduction

1.1 Features

A. Ultra-Low Power ($<1 \mu \mathrm{~W} / \mathrm{cm}^{2}$)
B. Reflective
C. Zero viewing angle dependency
D. Semi-bistable
E. Flexible
F. Long lifetime (>100000 switches)
G. Environmentally friendly

1.2 Technology Overview

The Rdot Display is an electrochromic display. It is categorized as a reflective display - meaning that it reflects ambient light instead of using a backlight. All layers are screen printed on a plastic substrate.

The display stack consists of organic layers including a plastic substrate, an electrochromic material, an electrolyte, and an electrode for each segment. Additional layers such as graphical overlays, circuits, and barrier layers may be added if required.

1.3 Glossary and Definitions

Word	
Electrochromism	The phenomenon of a material changing color when a voltage is applied.
Coloring	The process of switching the display from bright to dark state.

1.4 Modifications

The parameters of the Rdot display are customizable. Parameters such as reflection, contrast ratio, colors, thickness, etc., can be modified. If you have questions regarding this, please email support@rdotdisplays.com.

2. Optical Characteristics

Parameter	Test condition	Min	Typ.	Max	Unit
Contrast	$25^{\circ} \mathrm{C}$	27	30	32	$\Delta \mathrm{E}$
Reflectance	Bright state	38%	40%	45%	Y-value
Reflectance	Dark state	8%	12%	14%	Y-value
Viewing Angle (Θv)			90 (Lambertian)		0
Bistability	$25^{\circ} \mathrm{C},>80 \%$ contrast	15	23		min

3. Mechanical Characteristics

Parameter	Min	Typ.	Max	Unit
Thickness	30	120	$\mu \mathrm{~m}$	
Weight		0,02	$\mathrm{~g} / \mathrm{cm}^{2}$	
Bend radius		10	mm	

4. Timing characteristics

Parameter	Test Condition	Min	Typ.	Max	Unit
Coloring	$3 \mathrm{~V}, 4 \mathrm{~mm}^{2}, 25^{\circ} \mathrm{C}$	150	200	250	ms
Bleaching	$3 \mathrm{~V}, 4 \mathrm{~mm}^{2}, 25^{\circ} \mathrm{C}$	120	160	200	ms

5. Electrical characteristics

Parameter	Test Condition	Min	Typ.	Max	Unit
Power consumption	$3 \mathrm{~V}, 25^{\circ} \mathrm{C}$, static drive $4 \mathrm{~mm}^{2}$ pixel size		0,21	0,3	$\mu \mathrm{W} / \mathrm{cm}^{2}$
Energy consumption (switch)	$\begin{gathered} 3 \mathrm{~V}, 25^{\circ} \mathrm{C} \\ 4 \mathrm{~mm}^{2} \text { pixel size } \end{gathered}$			1	$\mathrm{mJ} / \mathrm{switch} / \mathrm{cm}^{2}$
Supply current (average)	$3 \mathrm{~V}, 25^{\circ} \mathrm{C}$, static drive $4 \mathrm{~mm}^{2}$ pixel size		0,07	0,1	$\mu \mathrm{A} / \mathrm{cm}^{2}$
Rec. driving voltage		$\pm 1,8$	± 3	$\pm 3,3$	V
Peak current*	$3 \mathrm{~V}, 4 \mathrm{~mm}^{2}, 25^{\circ} \mathrm{C}$	120	160	200	$\mu \mathrm{A}$
Pixel voltage	Coloring	1,8	3	3,3	V
Pixel voltage	Bleaching	-1,2	-3	-3,3	V
Open circuit potential	3 V charge for 3 sek	1,2	1,5	1,6	V

6. Charge characteristics

* Easily modified by putting a resistor in series with the display.

7. Power consumption

8. Operating conditions (Encapsulated version)

Parameter	Min	Typ.	Max	Unit	Method
Operating Temperature	-20		80	${ }^{\circ} \mathrm{C}$	
Operating Humidity	5		95	\% RH	
Storage temperature	0		40	${ }^{\circ} \mathrm{C}$	
UV exposure					

9. Lifetime

Parameter	Test condition	Min	Typ.	Max	Unit	Method
Number of switches	$25^{\circ} \mathrm{C}, \pm 3 \mathrm{~V}$	100000	200000			

[^0]
10. Recommended connectors

Connector Name	Connector pitch	Type
3M Electrically Conductive Adhesive Transfer Tape 9703-ACF	-	ACF
Molex 52852-XX70	$1000 \mu \mathrm{~m}$	Connector
TE Connectivity 84953-8	$1000 \mu \mathrm{~m}$	Connector
TE Connectivity 1734248-8	$1000 \mu \mathrm{~m}$	Connector
Amphenol FCI HLW8S-2C7LF	$1000 \mu \mathrm{~m}$	Connector
Amphenol FCI SFW8R-2STE1LF	$1000 \mu \mathrm{~m}$	Connector

10.1 Example Board Layout for 3M 9703 - ACF

Please not that the number of pads should correspond to number of electrodes on the display version.

11. Driving scheme (for more information, please see implementation guide)

Symbol	Definition
COM	Common electrode (marked with black color on the display)
SEG (BB)	Segment that should go from bright state to bright state
SEG (BD)	Segment that should go from bright state to dark state
SEG (DB)	Segment that should go from dark state to bright state
SEG (DD)	Segment that should go from dark state to dark state

Driving scheme A (1,8-3,3 Vcc For maximum energy efficiency)

Driving scheme B (1,8-3,3 Vcc For smooth switching)

Driving scheme C (3,7-5 Vcc With adjusted input level on COM**)

* For $4 \mathrm{~mm}^{2}$ pixels.
** The com port doesn't have to be analog as long as it can achieve a voltage of Vss-1.5 V. This could be achieved with a low pass filtered PWM signal or a voltage divider circuit for example. Please see circuit implementation suggestions (Section 12).

12. Circuit implementation suggestions

A positive voltage across the pixel activates dark mode while a negative voltage activates bright mode. In high impedance mode (High-Z) the pixel will maintain its state (see bistability time graph in Section 2).

1,8-3,3 V System

When running on 1.8-3.3 V it is possible to connect the display directly to the MCU (Circuit example A). Proposed waveforms of this approach demonstrated in driving scheme A or B in the datasheet. For long lifetime (especially when using higher voltages) a current limiting resistor may be connected in series with the counter electrode (Circuit example B). There is a trade-off between switching speed and lifetime, if fast switching speed is required the resistor value should be kept at a low value.

3,3-5 V System

The display should not be driven with voltages above 3,3 V for long lifetime applications. If the system uses more than $3,3 \mathrm{~V}$ it is recommended to adjust the voltage of the common electrode. This could be done cost effectively with a voltage divider (Circuit example C) or low pass filtered PWM signal amplified with an operation amplifier (Circuit example D).

12.1. Circuit examples

Circuit example A, 1.8-3.3V supply

Circuit example B, 1.8-3.3V supply

Example circuit C, 3.3-5V supply

Example circuit D, 3.3-5V supply

Component	Example	Size	Unit	Comment
Resistor	Panasonic ERJ-U02D5362X	50	$k \Omega$	It is possible to use a lower resistance to reduce the rise time of the circuit. The drawback is higher energy consumption of the circuit and more ripple on the COM electrode.
Capacitor	MuRata GRM21BC81C106KE15L	1	$\mu \mathrm{F}$	It is possible to use a lower capacitance to reduce the rise time of the circuit. The drawback is more ripple on the COM electrode.
Operational Amplifier	Texas Instruments TLV9001IDCKR			Used to maintain a stable COM potential at different loads.

[^1]Sales questions:
sales@rdotdisplavs.com +46706437341

[^0]: Technical questions:

[^1]: Technical questions:
 support@rdotdisplavs.com
 $+46761335104$

